Commentary

What’s New in Shock, May 2009?

Clinical Aspects

Validation of Postinjury Multiple Organ Failure Scores

Endothelial Nitric Oxide Synthase G894T (GLU298ASP) Polymorphism is Associated with Hypotension in Patients with E. Coli Bacteremia But Not in Bacteremia Caused By a Gram-Positive Organism

Urinary Liver-Type Fatty Acid–Binding Protein in Septic Shock: Effect of Polymyxin B–Immobilized Fiber Hemoperfusion

Estimated Right Ventricular Systolic Time Intervals for the Assessment of Right Ventricular Function in Acute Respiratory Distress Syndrome

Basic Science Aspects

Hypertonic Saline Attenuates TNF-α–Induced NF-κB Activation in Pulmonary Epithelial Cells

Coupled Plasma Filtration Adsorption in Experimental Peritonitis-Induced Septic Shock

Deferoxamine Mimics the Pattern of Hypoxia-Related Injury at the Microvasculature

Toll-Like Receptor 4 Regulates Heme Oxygenase-1 Expression After Hemorrhagic Shock Induced Acute Lung Injury in Mice: Requirement of P3 Mitogen-Activated Protein Kinase Activation

Elimination of C5AR Prevents Intestinal Mucosal Damage and Attenuates Neutrophil Infiltration in Local and Remote Organs

Losartan Prevents Sepsis-Induced Acute Lung Injury and Decreases Activation of Nuclear FactorκB and Mitogen-Activated Protein Kinases

Hemoglobin Vesicles and Red Blood Cells as Carriers of Carbon Monoxide Prior to Oxygen for Resuscitation After Hemorrhagic Shock in a Rat Model

Landiolol, an Ultrashort-Acting β1-Adrenoceptor Antagonist, Has Protective Effects in an LPS-Induced Systemic Inflammation Model
Low-Dose Dexamethasone–Supplemented Fluid Resuscitation Reverses Endotoxin-Induced Acute Renal Failure and Prevents Cortical Microvascular Hypoxia

Tania Johannes, Egbert G. Mik, Karin Klingel, Hans-Jürgen Dieterich, Klaus E. Unertl, and Can Ince

Recombinant Human Erythropoietin Prevents Lipopolysaccharide-Induced Vascular Hyporeactivity in the Rat

Roberta d’Emmanuele di Villa Bianca, Rosalinda Sorrentino, Emma Mitidieri, Stefania Marzocco, Giuseppina Autore, Christoph Thiemermann, Aldo Pinto, and Raffaella Sorrentino

Variable Effects of Inhibiting iNOS and Closing the Vascular ATP-Sensitive Potassium Channel (via Its Pore-Forming and Sulfonylurea Receptor Subunits) in Endotoxic Shock

Alastair O’Brien, Raymond P. Stidwill, Lucie H. Clapp, and Mervyn Singer

Retraction

Retraction

COVER: Hypertonic saline significantly attenuates TNF-α-induced NF-κB nuclear localization. Immunofluorescent images show the intracellular localization of NF-κB. The nuclear stains (blue) are omitted from the bottom row. In unstimulated cells, most of the NF-κB p65 subunit (green) is sequestered in the cytoplasm (first column). Hypertonic saline pretreatment does not significantly change the intracellular location of the p65 subunit (second column). TNF-α causes the p65 subunit to accumulate in the nucleus at 30 min (third column). Hypertonic saline attenuates TNF-α-induced NF-κB nuclear translocation (fourth column), with more of the p65 subunit left within the cytoplasm. The orange bar equals 10 μm. All images acquired at 40 x magnification. See Nydam et al., pages 466–472, 2009.