Commentary

What’s New in Shock, February 2009?

Daniel G. Remick

Review Article

β-Blockers in Sepsis: Reexamining the Evidence

Nathan M. Novotny, Tim Lahm, Troy A. Markel, Paul R. Crisostomo, Mei-Jing Wang, Yue Wang, Rinki Ray, Jiangming Tan, Dalia Al-Azzawi, and Daniel R. Meldrum

Clinical Aspects

The Effect of Anticoagulants and the Role of Thrombin on Neutrophil-Endothelial Cell Interactions in Septic Shock

Anita Tsen, Linda A. Kirschenbaum, Catherine LaRow, Raymond Khan, Susannah Kurtz, Sandeep Bansal, and Mark E. Astiz

Organ Dysfunction as Estimated by the Sequential Organ Failure Assessment Score is Related to Outcome in Critically Ill Burn Patients

José A. Lorente, Alfonso Vallejo, Rita Galeiras, Vinko Tomicic, Javier Zamora, Enrique Cerdá, Miguel A. de la Cal, and Andrés Esteban

Postoperative Vasopressin and Copeptin Levels in Noncardiac Surgery Patients: A Prospective Controlled Trial

Stefan Jochberger, Matthias Zitt, Günter Luckner, Walter R. Hasibeder, and Martin W. Dünser

Rifle Classification for Predicting In-Hospital Mortality in Critically Ill Sepsis Patients

Yung-Chang Chen, Chang-Chyi Jeng, Ya-Chung Tien, Ming-Yang Chang, Chun-Yu Lin, Chih-Cheng Chang, Horng-Chyuan Lin, Ji-Tseng Fang, Chih-Wei Yang, and Shu-Min Lin

Scoring Systems for Prediction of Mortality in Patients with Intensive Care Unit–Acquired Sepsis: A Comparison of the Pitt Bacteremia Score and the Acute Physiology and Chronic Health Evaluation II Scoring Systems

Ji-Young Rhee, Ki Tae Kwon, Hyun Kyun Ki, Sang Yop Shin, Dong Sik Jung, Doo-Ryeon Chung, Byeong-Chun Ha, Kyong Ran Peck, and Jae-Hoon Song

Inflammation-Induced Hepatotoxicity in Humans

Bart P. Ramakers, Moniek de Goeij, Johannes G. van der Hoeven, Wilbert H.M. Peters, and Peter Pickkers

Basic Science Aspects

Differential Immunological Phenotypes are Exhibited After Scald and Flame Burns

Johannes Tschoöp, André Martignoni, Maria D. Reid, Samuel G. Adediran, Jason Gardner, Greg J. Noel, Cora K. Ogle, Alice N. Neely, and Charles C. Caldwell

Intestinal Cytoskeleton Degradation Precedes Tight Junction Loss Following Hemorrhagic Shock

Geertje Thuijls, Jacco-Juri de Haan, Joep P.M. Deriks, Isabelle Daissormont, Mhamed Hadjoune, Erik Heineman, and Wim A. Buurman
Fumonisin B1 Reduces the Development of Multiple Organ Failure Induced by Zymosan in Mice

Comparison of the Effects of Aging and IL-6 on the Hepatic Inflammatory Response in Two Models of Systemic Injury: Scald Injury Versus I.P. LPS Administration

Vasoactive Intestinal Peptide and Pituary Adenylate Cyclase-Activating Polypeptide Inhibit Tissue Factor Expression in Monocyte In Vitro and In Vivo

Fluid Resuscitation with Artificial Oxygen Carriers in Hemorrhaged Rats: Profiles of Hemoglobin-Vesicle Degradation and Hematopoiesis for 14 Days

7-Nitroindazole, but Not L-Name or Aminoguanidine, Attenuates Anaphylactic Hypotension in Conscious Rats

Buccal Capnometry for Quantitating the Severity of Hemorrhagic Shock

The Systemic and Pulmonary LPS Binding Protein Response to Intratracheal Lipopolysaccharide

Cardioprotection by Hydrogen Sulfide: Suspended Animation, Inflammation, and Apoptosis

Beneficial Effects of Erythropoietin in Models of Shock and Organ Failure—Nothing is Simple and Easy

Catecholamines, Vasopressin and Markers of Acute Liver Injury in Septic Shock

SHOCK® is abstracted and/or indexed in Index Medicus, MEDLINE, Current Contents®/Life Sciences, Science Citation Index®, SciSearch®, Research Alert®, the Biochemistry & Biophysics Citation Index™, and Reference Update

Current Impact Factor 3.325

COVER: Immunolocalization of ZO-1 and claudin 3 (both in red) in ileum showed a regular distribution in control rats and in animals killed 15 min after induction of shock. Already at 30 min after HS, a significant loss of claudin 3 and ZO-1 was found, which persisted up to 90 min after shock. Nuclei are stained with DAPI (blue, original magnification x 200; for insert, additional magnification). See Thuijls et al., pages 164–169, 2009.